Get Analysis of Capture-Recapture Data PDF

By McCrea, Rachel S.

ISBN-10: 1439836590

ISBN-13: 9781439836590

ISBN-10: 1439836604

ISBN-13: 9781439836606

Show description

Read or Download Analysis of Capture-Recapture Data PDF

Best probability & statistics books

Introduction to Probability and Statistics for Engineers and - download pdf or read online

This up-to-date textual content offers an excellent advent to utilized likelihood and records for engineering or technology majors. Ross emphasizes the way within which chance yields perception into statistical difficulties; eventually leading to an intuitive knowing of the statistical methods in general utilized by practising engineers and scientists.

Norbert Henze's Irrfahrten und verwandte Zufälle: Ein elementarer Einstieg PDF

Dem Autor des bekannten Lehrwerkes "Stochastik für Einsteiger" gelingt mit diesem Buch auf geradezu spielerische Weise, den Leser mit zahlreichen überraschenden Zufallsphänomenen und Nicht-Standard-Grenzwertsätzen im Zusammenhang mit einfachen Irrfahrten und verwandten Themen zu fesseln. Das Werk besticht mit einer durchgängig problemorientierten, lebendigen Darstellung, zu der auch quick a hundred anschauliche Bilder beitragen.

Download PDF by Franz Wegner: Supermathematics and its Applications in Statistical

This article offers the mathematical thoughts of Grassmann variables and the tactic of supersymmetry to a huge viewers of physicists drawn to employing those instruments to disordered and significant structures, in addition to comparable subject matters in statistical physics. in line with many classes and seminars held by means of the writer, one of many pioneers during this box, the reader is given a scientific and educational creation to the subject material.

Additional resources for Analysis of Capture-Recapture Data

Sample text

M models, and π(m) is the prior probability of model m, for m = 1, . . , M . One might, for example, have π(m) = 1/M , for all m. If θ m denotes the parameters associated with model m, then the joint posterior distribution, π(m, θ m |x), can be written as π(m, θ m |x) ∝ fm (x|θ m )π(θ m |m)π(m), where fm (x|θ m ) is the likelihood under model m, and π(θ m |m) is the prior distribution for the model parameters under model m. In principle, by integrating the posterior distribution π(m, θ m |x) one can form the marginal posterior distribution over models, π(m|x).

For the Wood mice example we have fj = 0 for 18 < j ≤ 21. The sources of the data are as follows: Voles1: Meadow voles (Microtus pennsylvanicus): Pollock et al. (1990); Voles2: Meadow voles (Microtus pennsylvanicus): Nichols et al. (1984); Eastern chipmunks (Tamias striatus): Mares et al. (1981); Snowshoe hares (Lepus americanus): collected by Burnham and Cushwa, and recorded in Otis et al. 36); Spotted skinks (Oligosoma lineoocellatum): Phillpot (2000); Cottontail rabbits (Sylvilagus floridanus): Edwards and Eberhardt (1967); Squirrels (Sciurus carolinensis): Nixon et al.

1 The {fj } for 15 real data sets arising from a Schnabel census, where fj denotes the number of individuals encountered j times. For the Wood mice example we have fj = 0 for 18 < j ≤ 21. The sources of the data are as follows: Voles1: Meadow voles (Microtus pennsylvanicus): Pollock et al. (1990); Voles2: Meadow voles (Microtus pennsylvanicus): Nichols et al. (1984); Eastern chipmunks (Tamias striatus): Mares et al. (1981); Snowshoe hares (Lepus americanus): collected by Burnham and Cushwa, and recorded in Otis et al.

Download PDF sample

Analysis of Capture-Recapture Data by McCrea, Rachel S.


by Joseph
4.5

Rated 4.22 of 5 – based on 41 votes